Looking into myself: changes in interoceptive sensitivity during mirror self-observation

Vivien Ainley1, Ana Tajadura-Jiménez, Alkaterrini Fotopoulou2 & Manos Tsakiris1
1 Lab of Action & Body, Department of Psychology, Royal Holloway, University of London, UK 2 Institute of Psychiatry, King’s College London, UK
This study was funded by the ESRC and European Research Council under the Volkswagen Foundation ‘European Platform for Life Sciences’. Our thanks to the Science Museum, London, for hosting our experiment.

http://www.pc.rhul.ac.uk/sites/lab/

Abstract

Interoception is key to “the self” and emotion. Sensitivity to one’s body is thought to be a robust trait variable, however, increased self-focus can enhance self-processing. We examined whether self-observation in a mirror enhances interoceptive sensitivity. Participants performed a heartbeat detection task while looking at their own face in a mirror and also at a black screen. Interoceptive sensitivity rose significantly in the mirror condition for participants who had lower interoceptive sensitivity at baseline, independently of a range of potential confounds. Our results suggest that self-observation may be a viable way to manipulate interoceptive sensitivity, in order to directly test for causal relations with other aspects of self-processing.

I. Introduction

- Interoception = sensory signals arising from the body
- Individuals differ in their ‘Interoceptive Sensitivity’ i.e. their responsiveness to these body signals
- Interoceptive Sensitivity affects many aspects of self-processing
 - Objective vs. subjective measures of emotional arousal
 - Structural decision-making
 - Implicit memory
 - Body ownership
 - Links to clinical conditions e.g. anxiety, anorexia

II. Experimental Design

Interoceptive Sensitivity measured by heartbeat detection

Methods & Materials

- Participants gazed at a mirror and at a blank screen. Order of conditions randomised.
- Heartbeat detection measured by the Mental Tracking method (Schandry, 1981) randomised trials (25s, 35s, 45s) in each condition. True number of heartbeats recorded with a pulse transducer.
- Potential confounds measured = gender, age, level of regular exercise, body mass index, order of conditions and change in heart rate between conditions.

III. Results & Analysis

- Interoceptive Sensitivity = \(1 - \frac{\Sigma (\text{recorded heartbeats} - \text{recorded heartbeats})}{\text{recorded heartbeats}}\)
- Median split (Figure 1a)
 - ANOVA with baseline/mirror as within-subjects factor and Interoceptive Group as between-subjects factor (as well as order of conditions and gender) with change in heart rate as a covariate. Significant interaction (\(F(1,120)=7.376, MSE=0.033, p=0.008, \eta^2=0.008\)). Participants with below-median Interoceptive Sensitivity improved significantly in heartbeat detection when gazing at their own faces in a mirror.

- Multiple Regression (Figure 1b)
 - The only significant predictor of the change in Interoceptive Sensitivity between conditions was Interoceptive Sensitivity at baseline (\(F(2,126)=3.75, MSE=0.044, p=0.026\), predicting 5% of the variance (adjusted \(R^2=0.041\)).

IV. Discussion

- Interoceptive Sensitivity can be manipulated by increasing self-focus
- The effect is concentrated in people with low baseline Interoceptive Sensitivity, who have been neglected in previous research.

Interoception and the ‘Self’

- ‘Self’ is a function of multisensory integration
- Exteroception interacts with interoception
- In body ownership (Tsakiris et al., 2011)
- In somatoparaphrenia (Fotopoulou et al., 2012)
- People with low Interoceptive Sensitivity may have a more malleable sense of self.

V. Conclusions

- It may be possible to manipulate Interoceptive Sensitivity to test for causal links with other measures of self-processing.
- Further research is necessary to show whether this improvement in Interoceptive Sensitivity is elicited by other self-relevant stimuli.

References

25 Faircloug